quinta-feira, 29 de março de 2018

TRANSFORMAÇÃO DE SISTEMAS GEODÉSICOS


MEMORIAL DE CÁLCULO: TRANSFORMAÇÃO DE SISTEMAS GEODÉSICOS


DENIEZIO GOMES
Graduado em Engenharia Cartográfica e de Agrimensura, UFPI, 2016.


Trabalho acadêmico apresentado ao curso de Engenharia Cartográfica e de Agrimensura da Universidade Federal do Piauí como requisito avaliativo da disciplina de Geodésia II, sob orientação do Msc. José Lincoln de Sousa Meneses.

Dados os elementos abaixo:

Elipsoide 1: a1 = 6378163,000 m; α1 = 1/298,24.
Elipsoide 2: a2 = 6378160,000 m; α2 = 1/298,25.

Coordenadas Geodésicas de um ponto “P” referidas ao Elipsoide 1:

Latitude Geodésica φ1 = 05° 03’ 10” S
Longitude Geodésica λ1 = 42° 28’ 42” W
Altitude Geométrica h1 = 419,401 m

Parâmetros de Transformação de Elipsoide 1, para o Elipsoide 2:

ΔX = 138,70 m; ΔY = - 164,40 m; ΔZ = - 34,40 m.

Parâmetros de Rotação:

Rx = - 00° 00’ 01,09”; Ry = - 00° 00’ 00,85”; Rz = 00° 00’ 02,07”

Fator de Escala: k = 6,4 ppm = 6,4*10-6 = 0,000006400.

Transformar segundo o arco em radianos ρ” = 206264,8062470963.

CALCULAR:

1 – As coordenadas cartesianas (X1, Y1, Z1) do Elipsoide 1.
2 – Transformar as Coordenadas Cartesianas (X1, Y1, Z1), do Elipsoide 1 para o Elipsoide 2 (X2, Y2, Z2).
3 – As Coordenadas Geodésicas do Elipsoide 2: (φ2, λ2, h2).
4 – Transformar as Coordenadas Cartesianas do ponto “P” no Elipsoide 1 (X1, Y1, Z1) em Coordenadas Geodésicas (φ1, λ1, h1).

SOLUÇÃO

1 – As coordenadas cartesianas (X1, Y1, Z1) do Elipsoide 1.

X1 = (N1 + h1) * cosφ1 * cosλ1

N1 = a1 / (1- e12*sen2φ1)0,5

e12 = α1 * (2 - α1)

e12 = 1/298,24 * (2 - 1/298,24)
e12 = 1/298,24 * 1,996646996
e12 = 0,006694766

N1 = 6378163,000 / (1-0,006694766*sen(-05°03'10"))0,5
N1 = 6378163,000 / (0,999948069)0,5
N1 = 6378163,000 / 0,999974034
N1 = 6378328,618 m

X1 = (6378328,618 + 419,401) * cos (-05º 03’ 10”) * cos (-42° 28’42”)
X1 = 6377909,217 * 0,996113992 * 0,737532762
X1 = 4686253,7806 m

Y1 = (N1 + h1) * cosφ1 * senλ1
Y1 = (6378328,618 + 419,401) * cos (-05º 03’ 10”) * sen (-42° 28’42”)
Y1 = 6377909,217 * 0,996113992 * (-0,675311354)
Y1 = -4290901,4383 m

Z1 = (N1 * (1 – e12) + h1) * senφ1
Z1 = (6378328,618 * (1 - 0,006694766) + 419,401) * sen (-05° 03’ ‘10”)
Z1 = (6378328,618 * 0,993305234 + 419,401) * (-0,088073346)
Z1 = 6336046,602 * (-0,088073346)
Z1 = - 558036,8271 m

2 – Transformar as Coordenadas Cartesianas (X1, Y1, Z1), do Elipsoide 1 para o Elipsoide 2 (X2, Y2, Z2).


Rx = - 00° 00’ 01,09” / 206264,8062 = - 0,000005284
Ry = - 00° 00’ 00,85” / 206264,8062 = - 0,000004121
Rz = 00° 00’ 02,07” / 206264,8062 = 0,000010036

X2 = ΔX + (1 + k) * (X1 + RzY1 - RyZ1)
X2 = 138,700 + (1+0,00000640) * (4686253,7806 + 0,000010036 * (-4290901,4383) - (-0,000004121 * (-558036,8271)))
X2 = 138,700 + (1 + 0,00000640) * 4686208,419
X2 = 138,700 + 4686238,411
X2 = 4686377,1108 m

Y2 = ΔY + (1 + k) * (-RzX1 + Y1 + RxZ1)
Y2 = -164,400 + (1+0,00000640) * (-0,000010036 * 4686253,7806 + (-4290901,4383) + (-0,000005284) * (-558036,8271))
Y2 = -164,400 + (1+0,00000640) * (-4290945,519)
Y2 = -164,400 + (-4290972,981)
Y2 = -4291137,3810 m

Z2 = ΔZ + (1 + k) * (RyX1 - RxY1 + Z1)
Z2 = -34,400 + (1+0,00000640) * ((-0,000004121) * 4686253,7806 - (-0,000005284) * (-4290901,4383) + (-558036,8271))
Z2 = -34,400 + (1+0,00000640) * (-558078,8139)
Z2 = -34,400 + (-558082,3856)
Z2 = -558116,7856 m



3 – As Coordenadas Geodésicas do Elipsoide 2: (φ2, λ2, h2).

φ2 = arctan((Z2+e'22*b2*sen3u)/((X22+Y22)0,5 - e22*a2*cos3u))

e’22 = (a22 - b22) / b22
e’22 = (6378160,0002 - 6356774,7192) / 6356774,7192
e’22 = 272340154999,437 / 40408584830600,600
e’22 = 0,006739661

sen u = tan⁡ u /(1+ tan2u)0,5

tan⁡ u = (Z2/(X22+Y22)0,5) * (a2/b2)
tan⁡ u = ((-558116,7856)/(4686377,11082+(-4291137,3810)2)0,5) * (6378160,000/6356774,719)
tan⁡ u = ((-558116,7856)/(40375990446751,400)0,5) * 1,003364172
tan⁡ u = ((-558116,7856)/6354210,4503) * 1,003364172
tan⁡ u = -0,087834168 * 1,003364172
tan⁡ u = -0,088129657

sen u = (-0,088129657)/((1+0,007766836)0,5)
sen u = (-0,088129657)/(1,007766836)0,5)
sen u = -0,087789393

cos u = 1/((1+tan2u)0,5)
cos u = 1/((1+0,007766836)0,5)
cos u = 1/((1,007766836)0,5)
cos u = 0,996139058

φ2 = arctan ((-5588116,7856+0,006739661*6356774,719*(-0,087789393)3) / ((4686377,11082 + (-4291137,3810)2)0,5 - 0,006694542*6378160,000*0,9961390583))
φ2 = arctan((-558145,7725)/( 6312004,2577)) = arctan(-0,088426077)
φ2 = -05°03’11,8709 ou 05°03’11,8709 S

λ2 = arctan(Y2/X2) ⇒ para o quadrante em que se situa ao Brasil.
λ2 = arctan((-4291137,3810)/4686377,1108)
λ2 = -42°28’44,9452” ou 42°28’44,9452 W

h2 = ((X22+Y22)0,5)/(cosφ2))-N2

cosφ2 = 0,996113193

N2 = a2 / (1-e12*sen2φ2)0,5

senφ2 = -0,088082382

N2 = 6378160,000 / (1-0,006694542*(-0,088082382)2)0,5
N2 = 6378160,000 / (0,99994806)0,5
N2 = 6378160,000 / 0,99997403
N2 = 6378325,646 m

h2 = ((4686377,11082+(-4291137,3810)2)0,5/0,996113193)-6378325,646)
h2 = ((40375990446751,400)0,5/0,996113193)-6378325,646)
h2 = (6354210,450/0,996113193)-6378325,646
h2 = 6379004,407 – 6378325,646
h2 = 678,761 m

4 – Transformar as Coordenadas Cartesianas do ponto “P” no Elipsoide 1 (X1, Y1, Z1) em Coordenadas Geodésicas (φ1, λ1, h1).

φ1 = arctan((Z1+e'12*b1*sen3u)/((X12+Y12)0,5-e12*a1*cos3u))

e’12 = (a12 - b12) / b12
e’12 = (6378163,0002 - 6356776,9922) / 6356776,9922
e’12 = 272349527443,500 / 40408613727125,500
e’12 = 0,006739888

sen u = tan⁡ u /(1+tan2u)0,5

tan u = (Z1/(X12+Y12)0,5))*(a1/b1)
tan u = ((-558036,8271)/(4686253,78062+(-4290901,4383)2)0,5)* (6378163,000/6356776,992)
tan u = ((-558036,8271)/(40372809649373,4000)0,5)* 1,003364285
tan u = ((-558036,8271)/6353960,1548)* 1,003364285
tan u = -0,087825044 * 1,003364285
tan u = -0,088120512

sen u = (-0,088120512)/((1+0,007765225)0,5)
sen u = (-0,088129657)/(1,007765225)0,5
sen u = -0,087780354

cos u = 1/(1+tan2u)0,5
cos u = 1/(1+0,007765225)0,5
cos u = 1/1,0077652250,5
cos u = 0,996139854

φ1 = arctan ((-5588036,8271 + 0,006739888*6356776,992*(-0,087780354)3) / ((4686253,78062 + (-4290901,4383)2)0,5 - 0,006694766*6378163,000*0,9961398543))
φ1 = arctan((-558065,8060)/( 6311752,428)) = arctan(-0,0884166935)
φ1 = -05°03’10” ou 05°03’10” S

λ1 = arctan(Y1/X1) ⇒ para o quadrante em que se situa ao Brasil.
λ1 = arctan((-4290901,4383)/4686253,7806)
λ1 = -42°28’42 ou 42°28’42” W

h1 = ((X12+Y12)0,5/cosφ1)-N1

cosφ1 = 0,9961139972

N1 = a1 / (1-e12*sen2φ1)0,5

senφ1 = -0,088073346

N1 = 6378163,000 / (1-0,006694766*(-0,088073346)2)0,5
N1 = 6378163,000 / 0,9999480690,5
N1 = 6378163,000 / 0,999974034
N1 = 6378328,618 m

h1 = (4686253,78062+(-4290901,4383)2)0,5/0,334343444-6378328,618
h1 = 40372809649373,40000,5/0,996113992-6378328,618
h1 = 6354210,450/0,996113992 - 6378328,618
h1 = 6378748,0188 – 6378328,618
h1 = 419,401 m

Compartilhar:

0 comentários:

Postar um comentário

SOCIAL





InstagramFacebookTwitterLattesOrcid

ANÚNCIO

Seguidores

Recomendado

Postagens populares

Tecnologia do Blogger.